Machine-learning-augmented analysis of textual data: application in transit disruption management

TitleMachine-learning-augmented analysis of textual data: application in transit disruption management
Publication TypeJournal Article
Year of Publication2020
AuthorsPeyman Noursalehi, Koutsopoulos HN, Jinhua Zhao
Journal IEEE Open Journal of Intelligent Transportation Systems

Despite rapid advances in automated text processing, many related tasks in transit and other transportation agencies are still performed manually. For example, incident management reports are often manually processed and subsequently stored in a standardized format for later use. The information contained in such reports can be valuable for many reasons: identification of issues with response actions, underlying causes of each incident, impacts on the system, etc. In this paper, we develop a comprehensive, pragmatic automated framework for analyzing rail incident reports to support a wide range of applications and functions, depending on the constraints of the available data. The objectives are twofold: a) extract information that is required in the standard report forms (automation), and b) extract other useful content and insights from the unstructured text in the original report that would have otherwise been lost/ignored (knowledge discovery). The approach is demonstrated through a case study involving an analysis of 23,728 records of general incidents in the London Underground (LU). The results show that it is possible to automatically extract delays, impacts on trains, mitigating strategies, underlying incident causes, and insights related to the potential actions and causes, as well as accurate classification of incidents into predefined categories.