Deep Learning for Urban Mobility

Course Number: 

11.S955/11.S198

Term offered: 

Fall 2019

Course Description: 

Explores deep learning (DL) methods for urban mobility applications. Covers concepts of algorithmic prediction, interpretability, causality, and fairness in the context of urban mobility system design and policy making. Topics include demand prediction at both individual and aggregate levels, decision making with and without uncertainty, vehicle and ride sharing, built environment and travel behavior, traffic prediction and control, maps and information provision, and multimodal system design. Students learn intuitions and methods in DNN, CNN, RNN and reinforcement learning, build hands-on models using real-world datasets, and design and implement group projects. At the intersection of machine learning methods and urban mobility applications, the course seeks to reconcile the tension between generic-purpose models and domain-specific knowledge. Furthermore, the course envisions and critically reflects on how machine learning methods shape transportation research and mobility industry, and examines the potentials and pitfalls of their applications in urban mobility business and policies.