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Abstract

Although researchers increasingly adopt machine learning to model travel behavior, they
predominantly focus on prediction accuracy, ignoring the ethical challenges embedded
in machine learning algorithms. This study introduces an important missing dimension
- computational fairness - to travel behavior analysis. It highlights the accuracy-fairness
tradeoff instead of the single dimensional focus on prediction accuracy in the contexts of
deep neural network (DNN) and discrete choice models (DCM). We first operationalize
computational fairness by equality of opportunity, then differentiate between the bias in-
herent in data and the bias introduced by modeling. The models inheriting the inherent
biases can risk perpetuating the existing inequality in the data structure, and the biases
in modeling can further exacerbate it. We then demonstrate the prediction disparities
in travel behavior modeling using the 2017 National Household Travel Survey (NHTS)
and the 2018-2019 My Daily Travel Survey in Chicago. Empirically, DNN and DCM
reveal consistent prediction disparities across multiple social groups: both over-predict
the false negative rate of frequent driving for the ethnic minorities, the low-income and
the disabled populations, and falsely predict a higher travel burden of the socially disad-
vantaged groups and the rural populations than reality. Comparing DNN with DCM,
we find that DNN can outperform DCM in prediction disparities because of DNN’s
smaller misspecification error. To mitigate prediction disparities, this study introduces
an absolute correlation regularization method, which is evaluated with synthetic and
real-world data. The results demonstrate the prevalence of prediction disparities in
travel behavior modeling, and the disparities still persist regarding a variety of model
specifics such as the number of DNN layers, batch size and weight initialization. Since
these prediction disparities can exacerbate social inequity if prediction results without
fairness adjustment are used for transportation policy making, we advocate for careful
consideration of the fairness problem in travel behavior modeling, and the use of bias
mitigation algorithms for fair transport decisions.
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1 Introduction

In recent years, a growing body of literature has adopted machine learning models, par-
ticularly deep neural networks (DNNs), to predict travel behavior. The common practice
of machine learning is to identify the best model by fitting the training data and being
evaluated on the test data, with the objectives of performance optimization and output pre-
diction in various scenarios [1, 2]. Comparing DNN with traditional logit models, previous
studies have shown that DNN has higher predictive power and typically makes fewer mis-
takes in predictions compared to multinomial logit models (MNL) [3, 4]. Specifically, DNN
is powerful owing to factors such as the relaxation of linear relationships among variables
[5], automatic feature learning [5] and the ability to accommodate various data structures
[6, 7].

However, machine learning also poses tremendous ethical challenges. Many studies have
found that machine learning models can produce much worse prediction results for disad-
vantaged groups such as black people, women and low-income populations, leading to unfair
treatment of these populations. For example, software based on machine learning algorithms
to predict future criminals is biased against people of color [8]. Research on online adver-
tisement showed that ads (e.g. PeopleSmart ads, public records ads) for public records on
a person appear disproportionately higher for black-identifying names [9]. Literature con-
cerning text classification demonstrated gender bias in word embeddings trained on Google
News, which systematically associates men with computer programmers and women with
homemakers [10]. Although the fairness problem in machine learning has been revealed
across a large number of contexts, thus far no study has examined the computational fair-
ness issue in travel behavior modeling. In fact, fairness has been an enduring topic in the
transportation field [11, 12, 13]. The traditional transport fairness research either adopts
a highly qualitative approach or presents quantitative metrics without integrating fairness
into algorithms. In this computational era, it is critical to demonstrate the risks of naively
adopting models without fairness concerns and showcase the integration of fairness metrics
into modeling practices and policy decisions.

Motivated by these research gaps, this research investigates how to measure, evaluate, and
mitigate prediction disparities of travel behavior models regarding protected status - race,
gender, income, medical condition and region. We take the following three steps. First,
we introduce equality of opportunity to measure computational fairness in travel behavioral
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modeling based on the fairness theory in machine learning research. Second, we identify and
measure prediction disparities in travel behavior modeling using binary logistic regression
(BLR) and DNN. Third, building upon the approach by Beutel et al. [14], we adopt an
absolute correlation regularization method to mitigate the prediction biases, and evaluate
the performance of the new model with bias mitigation. The second and the third steps are
deployed on both synthetic and real-world datasets. Experiments conducted on the synthetic
datasets show how the prediction disparity varies with data structure, number of predictors,
sample size and the degree of model misspecification. The fairness analysis is then deployed
on the 2017 National Household Travel Survey (NHTS) dataset which has wide coverage
of geographic areas and populations with different characteristics, as well as the large sam-
ple size and the diversity of input features. It is also deployed on a regional dataset—the
2018-19 Chicago travel survey data. Our analyses show that the prediction disparity is-
sues are prevalent in travel behavior predictions, and our findings are robust to change of
hyperparameters such as the number of DNN layers, batch size and weight initialization.
Also, our analyses on the nation-wide travel data (NHTS) and the regional data (Chicago
travel survey) suggest similar prediction disparity issues and both demonstrate the effective-
ness of our bias mitigation approach. The code for our experiments is available online at:
https://github.com/zhengyunhan/Equality-of-Opportunity-Travel-Behavior.git.

Prediction disparities could bias transport policy decisions unfavorably against socially dis-
advantaged groups, such as low-income and ethnic minority populations. For example, when
the estimate of African-American communities’ demand for transit has a higher error rate,
transit agencies would make more mistakes when considering adding bus routes and invest-
ing in new transit stations for minority neighborhoods. Echoing Title VI, the Department
of Transportation regulations in 49 CFR Part 21 are designed to ensure that "no person in
the United States, based on race, color, or national origin, is excluded from participation
in, denied the benefits of, or otherwise subjected to discrimination under any program that
DOT financially assists" [15]. Therefore, people from different groups of interest (such as
race, gender, income) should be treated fairly by the models and algorithms which have
been widely deployed to inform transportation project planning and policy making.

The paper is organized as follows: the next section reviews travel behavior modeling and
fairness in machine learning. Section 3 introduces data and models, where we introduce
methods for measuring and mitigating prediction disparities, and also illustrate how the
methods are tied to fairness theories in machine learning. Section 4 presents the results,
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which include the simulation experiments on the synthetic data, the quanti�cation of pre-

diction disparity across various dependent variables and protected variables in the NHTS

data and the Chicago travel survey data, as well as the results of bias mitigation for both

synthetic and real-world data. Section 5 and 6 summarize the key �ndings and discuss the

study limitations and future research directions.

2 Literature Review

Discrete choice modeling has been used in numerous travel behavior studies. With the

development of arti�cial intelligence, machine learning techniques such as DNN have be-

come increasingly popular and been adopted widely to achieve higher prediction accuracy

[16, 17, 18]. Researchers adopted DNN to predict travel mode choices [5, 19], car ownership

[1], tra�c accidents [20], travellers' decision rules [21], driving behaviors [22], tra�c �ows

[23, 24] and many other decisions in the transportation �eld. Some researchers focused on

comparing the performance of various machine learning models such as DCM, DNN, SVM,

and random forest on travel behavior prediction [25, 26, 27, 28, 29]. However, nearly all

of these studies evaluate the performance of di�erent models in terms of accuracy, stability

and interpretability.

The previous machine learning literature has presented a great body of evidence showing

that a model can act discriminatorily on one population in a variety of settings including,

but not limited to, criminal risk assessment [8, 30], clinical care [31, 32], online advertisement

delivery [33, 9], text classi�cation [34, 10] and credit risk evaluation [35, 36]. Approaches

to understand and address unfairness in machine learning models include formalizations of

fairness in machine learning [37, 38], designing fairness-enhancing algorithms [39, 40, 41] and

solving fairness concerns in real-world industries [42, 43]. In contrast to the rich literature in

computer science focusing on fairness analysis, the authors cannot identify any study that

has investigated the fairness issue in travel behavior prediction.

On the other hand, fairness has long been a crucial concern in transportation planning,

and there has been numerous transport equity analysis [44, 45, 46, 47]. Among the vari-

ety of equity-focused transportation studies, most carried out fairness discussions in terms

how transportation infrastructure, mobility services, opportunities and rights are distributed

among the population [11, 12]. Research in this domain usually involves the cost and ben-

e�t analysis for speci�c groups or individuals related to a speci�c transportation project
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[12]. The analysis of cost may include transportation cost [13] and environmental cost [48],

such as the air and noise pollution produced by transportation-related construction. The

bene�t analysis focuses on the bene�ts people receive in terms of accessibility, mobility and

economic vitality [44, 49]. In these studies, fairness is usually evaluated based on the dis-

tributions of costs and bene�ts among di�erent demographics, neglecting the fact that the

machine-learned models deployed to estimate travel demand - which is critical for cost and

bene�t analysis - itself can be unfair [50, 38]. Therefore, instead of focusing on substan-

tive fairness which emphasizes resource allocation and decision making, we take a step back

and examine bias exhibited in the model estimation results. As such, this study aims to

enrich the fairness discussion by focusing on machine-learned models, investigating the fair-

ness issue in the modeling process and analyzing the biases that arise in the modeling results.

Among a variety of fairness de�nitions, this paper uses equality of opportunity to de�ne

fairness. Equality of opportunity is a relaxation of the fairness measure equality of odds,

and equality of odds states that the protected and unprotected groups should have equal

rates for true positives and false positives [51, 52]. Since achieving equal rates for both mea-

sures (true positives and false positives) in practice is usually hard, equality of opportunity

is adopted instead, stating that protected and unprotected groups should have equal true

positive rates [51, 52]. A similar fairness de�nition - �reciprocal equality of opportunity� - is

also adopted in this study, which requires that the protected and unprotected groups have

equal true negative rates [53].

Equality of opportunity is a type of �disparate impact� analysis which evaluates fairness

based on model impact (results) - speci�cally whether policies or practices have a dispro-

portionately adverse impact on protected classes [50]. This fairness notion is chosen as it is

inherently connected with the notion of equality of opportunity in the traditional transporta-

tion equity literature. In the traditional transport equity literature, equality of opportunity

focuses on applications and resource allocations. It asserts that the education, employment

and consumer opportunities accessible to residents should be equal between di�erent groups

[12]. Violation of equality of opportunity in travel behavior predictions can consequently

a�ect the transportation resources accessible by di�erent populations, thus perpetuating

inequality of opportunity in reality.

In addition to equality of opportunity, another widely-adopted fairness measure focusing on

disparate impact is �demographic parity� [51, 52], which is achieved when the likelihood of
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a positive outcome is the same regardless of whether the person is in the protected group.

For example, when studying gender fairness in predicting the usage of public transit, demo-

graphic parity is achieved when the proportion of people predicted as using public transit

frequently is the same between male and female. Equality of opportunity is preferred to

demographic parity since the latter fails to account for discrimination which is explainable

in terms of legitimate grounds [54].

Apart from disparate impact analysis, another strand of research - called �disparate treat-

ment� analysis - evaluates fairness in terms of treatment rather than modeling result to see

if the decisions are made (partly) based on the subject's sensitive attribute information [55].

This type of fairness includes �fairness through unawareness� and �counterfactual fairness�.

In the de�nition of fairness through unawareness, an algorithm is fair as long as any pro-

tected attributes are not explicitly used in the decision-making process [56, 57]. On the

contrary, counterfactual fairness deems a predictor to be fair if its output remains the same

when the protected attribute is �ipped to its counterfactual value [38, 58]. Disparate treat-

ment emphasizes explicit formal classi�cation and intentional discrimination. Therefore, in

many machine learning modeling cases where there is no discriminatory intent, disparate

impact doctrine is more suited to analyzing unintended biases in data mining compared with

disparate treatment doctrine.

The various fairness de�nitions can also be categorized based on whether they are individual-

focused or group-focused. Group fairness, such as equality of opportunities, requires a

fair model to treat di�erent groups equally, whereas individual fairness refers to the rule

that deems a predictor fair if it produces similar outputs for similar individuals [38, 59].

Though we use equality of opportunities as the fairness de�nition in this research, the

above-mentioned fairness de�nitions can be adopted for future studies in this area.

3 Data and Methods

3.1 Equality of opportunity as the de�nition of fairness

This study measures fairness by equality of opportunity, mathematically denoted asP(ŷ =

1jz = 0 ; y = 1) = P(ŷ = 1 jz = 1 ; y = 1) , in which y represents the binary travel behavioral

outcomes,ŷ represents the predicted values,z represents the protected variable such as race

and gender. Intuitively, equality of opportunity requires predicted travel behavior to be
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conditionally independent of the protected attributes given that the real outcome is positive

[52]. Taking racial disparity as an example, equality of opportunity implies that the predicted

travel demand is independent of the travelers being in minority or majority groups, thus

achieving a socially non-discriminatory predictive performance [60]. A related concept is

referred to as reciprocal equality of opportunity, denoted asP(ŷ = 1 jz = 0 ; y = 0) = P(ŷ =

1jz = 1 ; y = 0) , implying that the predicted travel behavioral outcome is conditionally

independent of the protected attributes given that the real outcome is negative [53].

3.2 Data and Variables

In this study, numerical experiments are conducted on two datasets: a group of synthetic

datasets and the 2017 National Household Travel Survey data. For each of these two

datasets, both BLR and DNN are deployed for model estimations. The experiments on

the synthetic data are used to show how the covariance between a protected variable and

an explanatory variable may lead to disparate results, and how this prediction disparity

varies with the covariance of these two variables, the sample size, and the number of input

variables. We then test our bias mitigation method on the synthetic data. For the NHTS

data, we examine the prediction disparity for a series of protected (sensitive) variables (e.g.

race, gender, income, medical conditions and urban-rural divide) and di�erent dependent

variables. Our bias mitigation method is later tested on this real-world dataset as well.

3.3 Models and Bias Measurement

In this study, we adopt two models, BLR and DNN, for model predictions, which are later

evaluated by fairness metrics for di�erent demographics.

3.3.1 Binary Logistic Regression (BLR)

As a classic travel behavior modeling method, BLR has been widely deployed to predict the

probability of a certain outcome. The outcome probability is de�ned as follows:

P(yi = 1 jx i ) =
1

1 + exp(� (� + x >
i � ))

where yi identi�es the dependent variable for individual i , x i represents the vector of all

the independent variables,� is the intercept, � is the vector of parameters associated with

attribute x i , which is estimated by the negative log likelihood loss function.
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Figure 1: DNN architecture

3.3.2 Deep Neural Network Modeling (DNN)

DNN usually outperforms traditional methods regarding prediction accuracy, because of the

non-linear transformation. The outcome probability using DNN can be expressed as follows

[27, 26]:

P(yi = 1 jx i ) =
1

1 + exp(� �( x i ; � ))

where�( x i ; � ) represents a layer-by-layer transformation:�( x i ; � ) = ( gm � :::g2 � g1)(x i ; � ),

in which each gl (x >
i � ) = ReLU (x >

i � + bl ) denotes one standard module in DNN which

consists of linear and recti�ed linear unit (ReLU) transformations. A dropout layer with

a dropout rate of 0.01 is applied after each standard module to prevent over�tting. The

architecture of the DNNs used in this study is shown in Figure 1, which includes 3 hidden

layers and 200 neurons in each layer. Noted that the protected variablez is also included

in x as an explanatory variable.

3.3.3 Bias Measurement

After applying BLR and DNN models for a speci�c prediction task, we measure the fairness

metrics for the prediction result. Based on the fairness de�nition of equality of opportunity,

unfairness occurs when the machine-learned models o�er much worse results for some demo-

7



graphic groups than others [52]. The degree of unfairness is measured by the false positive

rate (FPR) gap or the false negative rate (FNR) gap between two groups depending on the

speci�c context. The two fairness metrics are calculated as:

False Positive Rate (FPR) Gap =
FPz=0

TNz=0 + FPz=0
�

FPz=1

TNz=1 + FPz=1
(1)

False Negative Rate (FNR ) Gap =
FN z=0

TPz=0 + FN z=0
�

FN z=1

TPz=1 + FN z=1
(2)

In the above expressions,TPz, FPz, TNz, and FN z represent the number of true positives,

false positives, true negatives and false negatives in classz, with z = 0 representing the

disadvantaged group. For example, when examining racial bias in predicting frequent us-

age of rideshare,FN z=0 represents the number of individuals in the minority group who

frequently use rideshare but are wrongly categorized as not doing so, andFPz=0 represents

the number of individuals in the minority group who do not frequently use rideshare but

are wrongly categorized as doing so. Higher false negative rate or false positive rate for the

minority group intuitively suggests that the algorithm makes more mistakes on the ethnic

minority group with regard to predicting whether an individual uses rideshare frequently,

which might lead to signi�cant mismatch between demand and supply of TNC service in mi-

nority neighborhoods. Therefore, our de�nition captures the essential intuition in transport

equity discussions. For these two fairness metrics, lower absolute value is better.

3.4 Bias Mitigation

Adapted from the work of Beutel et al. [14], we mitigate prediction disparity by adding a

regularization term to the loss function. While Beutel et al. [14] used correlation between

the output distributions of two groups as their regularization term since the outputs in

their studies are continuous scores, we use the correlation between the predicted probability

distributions of two groups instead, which makes the regularization term di�erentiable in our

classi�cation tasks. This regularization loss term helps shrink the di�erence of prediction

disparity across groups towards zero. Compared with other approaches which generally

come with notable engineering concerns, this approach is lightweight, can be easily adapted

to real-world systems and has achieved good empirical results [14]. The loss function is

speci�ed as:

min
p

(1 � � )L primary + � jCorr (p(x ); zjy = q)j (3)
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where

L primary =
NX

i =1

[� yi log(p(x i )) � (1 � yi )log(1 � p(x i ))] (4)

Corr (p(x ); zjy = q) =

P
i 2 Sq

(p(x i ) � p(x i ))( zi � zi )

(
q P

i 2 Sq
(p(x i ) � p(x i ))2 + � ) � (

q P
i 2 Sq

(zi � zi )2 + � )
(5)

Sq = f i jyi = qg ; � = e� 20 (6)

In the above equation, x i is the vector representing the explanatory variables.yi denotes

the true outcome and p(x i ) represents the estimated probability of the output yi =1 using

the explanatory variables. q is equal to 1 if the false negative bias is examined and is equal

to 0 if the false positive bias is examined.zi denotes the value of the protected variable.�

is added to prevent the denominator from becoming zero.Sq represents the set of samples

with yi = q, which is used to compute the correlation loss.

L primary is a negative log likelihood loss function for the DNN. The correlation term is a

penalty added to the model based on the distribution of the predictions. By reducing the

correlation betweenp(x i ) and zi conditioning on yi = q, it minimizes the conditional de-

pendence between the distribution of the predicted probabilities and the group membership

determined by the protected variable. � is a parameter controlling the tradeo� between pri-

mary loss and fairness loss. When� = 0 , no bias mitigation is employed. In this research,

we demonstrate the e�ectiveness of using this fairness-adjusted loss function in both BLR

and DNN.

4 Experiments

In this section, the experiment results for the synthetic dataset, the NHTS data and the

Chicago travel survey data are reported. For these three datasets, we �rst conduct BLR

and DNN for model estimations, then examine fairness issues in the prediction results, and

lastly apply our bias mitigation methods. DNN is implemented using the TensorFlow library

in Python. BLR is implemented using the scikit-learn library when examining the fairness

issues while using the TensorFlow library for bias mitigation, since TensorFlow allows us to

modify the loss function.
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Experiments conducted in TensorFlow all use the mini-batch stochastic gradient descent

method with a batch size of 1,000 and a step size of 0.0001 in each training. We draw sam-

ples without replacement to generate the mini-batches within an epoch. After a mini-batch

is generated, the algorithm calculates the prediction loss and updates the coe�cients. The

model that produces the lowest training loss among the 50 epochs is chosen and later per-

forms prediction over the test data. We ran 5 trials of 5-fold validation for each experiment.

4.1 Synthetic Experiment

In our simulations, we consider the type of bias that arises when the true predictor and the

protected variable are highly correlated. In this case, the true predictor of the outcome also

happens to serve as a reliable proxy for class membership in the training set [50, 61]. For

example, if the usage of rideshare is positively associated with income, and ethnic minorities

in the training data tend to have lower income, the algorithm will tend to predict low usage

of rideshare for the minority population, even if the true contributing factor for rideshare

usage is income rather than race. This type of bias is inherent in the existing population

inequality and has been less emphasized in previous literature.1

4.1.1 Data generation process

In the synthetic dataset, each data point can be represented by a tuple (zi ,x i ,k i ,yi ), where

z represents the protected variable (e.g. race, gender),x is the explanatory variable that

is correlated with z (e.g. income), k is a vector of explanatory variables which does not

include x and z. y represents the binary outcome.

First, x and all the elements in k are drawn from the independent standard normal dis-

tributions. z is generated as a binary variable that is positively correlated withx and is

independent with k . The label y is drawn from a binomial distribution with probability

P r (y = 1) = 1
1+exp ( � V ) . The systematic utility function V takes x and k as the input

variables.

1Besides this inherent bias, other sources of bias could exist, such as the imbalanced training data problem.
This problem arises when the disadvantaged group has insu�cient training data or is misrepresented, in which
case the model will either fail to learn a correct statistical pattern or favor the majority group during the
estimates, since the training data in the disadvantaged groups often misrepresent the true population when
they are insu�cient [62, 63, 31, 64, 65].
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We test two scenarios with the true utility function taking a linear form and a quadratic form

respectively. Let V = � + w � (x; k ). In the �rst scenario, � (x; k ) takes the linear transfor-

mation: � (x; k ) = [ x; k1; k2; :::; kd]. The weight for x is set to 1, and the weights for other ex-

planatory variables are chosen from the set {-0.5,0.5} with equal probabilities. In the second

scenario, � (x; k ) takes the quadratic transformation: � (x; k ) = [ x; k1; :::; kd; x2; k2
1; :::; k2

d].

The weights for x and x2 are set as 1 and 0.5, and the weights for other explanatory variables

take {-0.5,0.5} with equal probabilities. Our data generation process makes sure that the

mean value ofz is 0.5, which means that there are approximately equal numbers ofz = 0

and z = 1 , thus giving us a balanced dataset. Detailed descriptions of the data generation

process can be found in Appendix A.

We examine the cases whereCov(z; x) is non-negative and x positively a�ects V . We

therefore usez = 0 to mimic the disadvantaged population and usez = 1 to mimic the priv-

ileged population, since in the real world the privileged population (e.g. the ethnic majority

group) is often positively correlated with the factor (e.g. income) that has a positive e�ect

on the utility of an advanced mobility service (e.g. the utility of using a ride-hailing service).

4.1.2 Fairness measurement results

In the prediction phase, we usez, x and k as the explanatory variables for both the logit

model and the DNN model, so these two choice models are de�ned asLogit (z; x; k ) and

DNN (z; x; k ).

First, we want to examine how fairness measures and accuracy vary regarding the correla-

tion between the sensitive attribute z and the explanatory variable x, the sample size and

the number of explanatory variables in the data generation process. Therefore, we run ex-

periments along these three dimensions, and when each dimension is examined, we set the

other two dimensions as the default values. The default values forCov(z; x), sample size

and number of explanatory variables are 0.2,106 and 5. For each experiment, three datasets

are randomly generated based on the above data generation process.2

2Occasionally, the data generation process in Scenario 2 produced datasets with highly imbalanced out-
comes (e.g. when the minority class accounts for less than 30% of the total samples). In that case, we would
drop that imbalanced dataset and generate another one. We iterated this process until all the datasets are
roughly balanced (when the minority class accounts for 40%-50% of the total samples)
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(a) FNR gap vs. Cov(z; x) (b) FNR gap vs. # predictors (c) FNR gap vs. Sample Size

(d) Accuracy vs. Cov(z; x) (e) Accuracy vs. # predictors (f ) Accuracy vs. Sample Size

Figure 2: Fairness metric and accuracy with di�erent parameters (BLR vs. DNN): true model
taking the linear form; estimation models: Logit (z; x; k ) and DNN (z; x; k ). Logit (z; x; k ) adopts a
linear speci�cation, so both models contain the true model.

Figure 2 presents the results of the linear data generating process, while in Figure 3, the

true data generating process is quadratic in variables. In both �gures, the �rst row shows

the FNR gap (see Equation 2) between the disadvantaged group (de�ned asz = 0 ) and the

privileged group (de�ned asz = 1 ) as the measure of fairness and the second row shows the

prediction accuracy. The x-axis of the �rst, second and third columns respectively represent

the covariance betweenz and x, the number of explanatory variables in the data genera-

tion process and the sample size. Each �gure plots both the BLR and DNN results, which

are represented by the blue and orange colors. The �gures plot the values averaged across

5 trials of 5-fold validation in 3 datasets for each experiment; the error bar indicates the

standard deviation multiplied by 1.96, which approximates the con�dence interval of the

estimations.

As shown in Figure 2, the results of BLR and DNN mostly overlap since they both recover

the true linear model. Figure 2a shows that the FNR gap increases withCov(z; x), indi-

cating that as x becomes more positively correlated withz, the algorithm is more likely to

falsely associate the disadvantaged population (z=0) with negative outcomes, even if their

real outcomes are actually positive. Prediction disparity is a metric relatively independent
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(a) FNR gap vs. Cov(z; x) (b) FNR gap vs. # predictors (c) FNR gap vs. Sample Size

(d) Accuracy vs. Cov(z; x) (e) Accuracy vs. # predictors (f ) Accuracy vs. Sample Size

Figure 3: Fairness metric and accuracy with di�erent parameters (BLR vs. DNN): true model tak-
ing the quadratic form; estimation models: Logit (z; x; k ) and DNN (z; x; k ). Logit (z; x; k ) follows
a linear model speci�cation, so it has the misspeci�cation error.

of the predictive performance, as there is no di�erence in prediction accuracy with di�erent

Cov(z; x) (Figure 2d); it is also not due to the imbalanced training data problem, as the

outcome variable, the protected variable and all the explanatory variables are balanced in

the training data. The prediction disparity is purely inherent in the relationship among

variables in the data. Figure 2b shows that the FNR gap decreases with the number of

explanatory variables, which is probably because increasing the number of predictors dilutes

the in�uence of x on the outcome. Figure 2c shows that the variance of the fairness and

accuracy estimations decrease as the sample size increases.

Figure 3 shows the results of prediction fairness and accuracy when the true data generation

model takes a quadratic form. In this case, the BLR with linear speci�cation has the model

misspeci�cation error while DNN does not. Figure 3a shows that prediction disparity still

increases with the increase ofCov(z; x), and DNN is always associated with smaller FNR

compared with BLR for Cov(z; x)>0. This result indicates that the model misspeci�cation

not only induces more prediction error, but also harms prediction fairness. Figure 3b shows

that though increasing the number of explanatory variables can reduce the prediction dis-

parity, the magnitude of the prediction disparity caused by model misspeci�cation was not
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reduced. Figure 3c indicates that the fairness prediction result becomes more stable as the

sample size increases.

4.1.3 Bias mitigation results

To address prediction disparity, we apply the bias mitigation method illustrated in Sec-

tion 3.4 to the synthetic datasets with Cov(z; x) = 0 :2, sample size of 100,000 and number

of predictors set to 5. For each regularization weight� , we run the training procedure 5

times for each of the 3 datasets with 5-fold cross-validation and report the average results

in Figure 4 for Scenario 1 and Figure 5 for Scenario 2. The error bars in the �gures indi-

cates the standard deviation multiplied by 1.96, which approximates the con�dence interval.

Figure 4a and 5a show that in both scenarios, applying the regularization even with a small

weight (e.g. � = 0 :1) can substantially reduce the prediction disparity and this �nding holds

for both BLR and DNN. Given the model misspeci�cation for BLR in Scenario 2, Figure 5a

shows that our method is still e�ective in reducing the prediction bias to as low as zero.

Figure 4b and 5b report the corresponding model accuracy as the regularization weight

varies. The results show that when� < 0:7, the accuracy decreases only slightly. These

results suggest that improvement in prediction fairness can be achieved with a minimal cost

of accuracy.

We also test our mitigation method on the dataset with an imbalanced distribution over the

protected variable. For the data generated in Scenario 2, we randomly drop half of the data

in the disadvantaged group to make the ratio of number of samples in the disadvantaged and

the privileged groups roughly 1:2. Figure 6 shows the bias mitigation results with this new

dataset. It shows that the increase in bias mitigation weight leads to a reduction in the mean

FNR gap for both DNN and BLR, and the fairness-accuracy trade-o� still exists. However,

for DNN, though the FNR gap continues to decrease with increasing� , the absolute value

of the FNR gap becomes larger when� > 0:2, indicating that the model may adjust too

much to mitigate the bias when the bias mitigation weight is too large.
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(a) FNR gap vs. Regularization Weight (b) Accuracy vs. Regularization Weight

Figure 4: Fairness and accuracy by bias mitigation weight (� ): true model taking the linear form
(Scenario 1)

(a) FNR gap vs. Regularization Weight (b) Accuracy vs. Regularization Weight

Figure 5: Fairness and accuracy by bias mitigation weight (� ): true model taking the quadratic
form (Scenario 2)

(a) FNR gap vs. Regularization Weight (b) Accuracy vs. Regularization Weight

Figure 6: Fairness and accuracy by bias mitigation weight (� ): imbalanced dataset
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4.2 The NHTS Dataset

4.2.1 Data and variables

The NHTS data are collected directly from a strati�ed random sample of U.S. households.

The richness of the dataset enables us to examine fairness in predictions with varying de-

pendent variables and protected attributes. Protected attributes are the variables we want

to protect against in the model prediction process, which include race, gender, income, med-

ical condition and urban-rural divide in this study. In terms of �race�, we de�ne the ethnic

minority group as the non-white population. In terms of the variable �income�, we identify

low-income households based on the combination of household size and last year's household

income following the 2017 Health and Human Services poverty guidelines [66]. An individual

is deemed to have a �medical condition� if he or she answered �yes� to the question �do you

have a condition or handicap that makes it di�cult to travel outside of the home?� in the

survey. Regarding the protected variable �region�, the question �household in urban area?

Answer `yes' or `no'.� is used to identify whether the individual is an urban or rural resident.

The dependent variables examined in this study can be categorized into two groups: the

�rst group contains four variables indicating the �yes� or �no� answers to �usually work from

home�, �have the option of working from home�, �agree that travel is a �nancial burden� and

�agree that gas price a�ects travel�; the second group contains four variables indicating the

high frequent usage of four travel modes: bike, car, bus and rideshare. These eight depen-

dent variables are all binary variables, with �yes� taking the value 1. A detailed description

of these variables can be found in Appendix B.

The distributions of the dependent variables except �travel burden� and �gas price impact�

are highly skewed, and previous research has found that when the outcome class sizes are

highly imbalanced, the classi�cation algorithms tend to strongly favor the majority outcome

class, resulting in very low or even no detection of the minority outcome class [67]. There-

fore, for each of the six imbalanced dependent variables, we balance the data to facilitate

training by downsampling the majority class. The summary statistics of the independent

and dependent variables as well as the distributions of two groups of dependent variables by

di�erent protected attributes are reported in Appendix B.
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4.2.2 Bias mitigation method with sample weights

As previously mentioned, one source of bias in the data is that the training data might not

be representative of the overall population. Luckily, NHTS contains the sample weight3 [68]

for each individual, which can be used to address the representation bias. We incorporate

the sample weights in the training and evaluation phases. Weighted accuracy and weighted

fairness metrics are used for model evaluation. To be speci�c, the weighted accuracy is

calculated as:

Weighted Accuracy =
P N

i 1(ŷi = yi )wi
P N

i wi
(7)

where wi represents the sample weight for samplei , yi is the label and ŷi is the predicted

outcome. Similarly, the sample weight is applied for each sample when calculating fairness

metrics (FNR and FPR). N denotes the sample size.

Corresponding to the weighted evaluation metrics, the sample weights are also applied in

the loss function during the training process. The weighted loss function is written as:

min
p

(1 � � )L primary + � jCorr (p(x ); zjy = q)j (8)

where

L primary =
NX

i =1

wi L i
P N

i wi
; L i = � yi log(p(x i )) � (1 � yi )log(1 � p(x i )) (9)

Corr (p(x ); zjy = q) =

P
i 2 Sq

wi (p(x i ) � m(p(x i )))( zi � m(zi ))

(
q P

i 2 Sq
wi (p(x i ) � m(p(x i ))) 2 + � ) � (

q P
i 2 Sq

wi (zi � m(zi ))2 + � )

(10)

m(p(x i )) =

P
i 2 Sq

wi p(x i )
P

i 2 Sq
wi

; m(zi ) =

P
i 2 Sq

wi zi
P

i 2 Sq
wi

(11)

Sq = f i jyi = qg ; � = e� 20 (12)

BLR is implemented through the scikit-learn library when evaluating fairness issues and

through TensorFlow when mitigating the bias. For DNN, all of the experiments are imple-

mented in TensorFlow. Each of the experiments conducted in TensorFlow uses the mini-

batch gradient descent method with a step size of 0.0001 during training. The best model

among the 5000 epochs is chosen and later performs prediction over the test data. 5-fold

3which is primarily calculated as the inverse of the probability of selection of the person in the given
sampling stratum from the sampling frame
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(a) (b) (c)

(d) (e)

Figure 7: Disparity of prediction accuracy (BLR): frequent usage of bike, car, bus and rideshare

validation is conducted for each experiment.

4.2.3 Fairness issues in the adoption of BLR and DNN

The comparison of prediction accuracy with respect to various protected variables are pre-

sented by the bar charts in Figure 7 and 8 for BLR and in Figure 9 and 10 for DNN. Each

bar chart depicts the prediction accuracy of two populations grouped by a speci�c protected

variable (race, gender, income, medical condition, region) side by side. The height gap of

two adjacent bars shows the prediction disparity for that protected variable. Figure 7 and

9 illustrate the prediction results of the dependent variables regarding travel mode usage by

BLR and DNN. Figure 8 and 10 plot the prediction results of the dependent variables �work

from home�, �work from home option�, �travel burden� and �gas price impact� by BLR and

DNN. The dependent variables are speci�ed on the x-axis of the bar charts.

The y-axis of the bar charts represents one of the error rates: FPR or FNR. We examine

FNR for the �rst group of dependent variables since we are concerned about cases where

active users of a certain travel mode are not identi�ed (Figure 7 and 9), and FPR for the

second group of dependent variables (Figure 8 and 10) since we want to focus on instances

which have negative outcomes but are wrongly identi�ed as positive (e.g. people who do not
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