Measuring policy leakage of Beijing’s car ownership restriction

Yunhan Zheng
Department of Urban Studies and Planning
Department of Civil and Environmental Engineering
Massachusetts Institute of Technology, Cambridge, MA 02139

Joanna Moody
Research Program Manager, Mobility Systems Center, MIT Energy Initiative
Massachusetts Institute of Technology, Cambridge, MA 02139

Shenhao Wang
Department of Urban Studies and Planning
Massachusetts Institute of Technology, Cambridge, MA 02139

Jinhua Zhao (corresponding author)
Associate Professor
Department of Urban Studies and Planning
Massachusetts Institute of Technology, Cambridge, MA 02139
Email: jinhua@mit.edu

Declarations of interest: none.

Author contribution statement: The authors confirm contribution to the paper as follows: study conception and design: Y.Z., J.M., S.W, J.Z.; data collection: S.W.; analysis and interpretation of results: Y.Z.; draft manuscript preparation: Y.Z., J.M., S.W.; research supervision: J.Z. All authors reviewed the results and approved the final version of the manuscript.
Measuring policy leakage of Beijing’s car ownership restriction

ABSTRACT
In response to severe traffic congestion and air pollution, Beijing introduced a car ownership restriction policy to curb growth in the number of private cars in the city. However, Beijing residents can still purchase and register their cars in neighboring cities and this “leakage” may substantially reduce the policy’s effectiveness. Using city-level data collected from the CEIC China Premium Database, we aim to quantify the spill-over effect: the impact of Beijing’s policy on the growth of private car registrations in neighboring cities. We first deploy a synthetic control method to create a weighted combination of non-treated cities for each treated city. We then employ a difference-in-differences approach to estimate the policy leakage. Our models suggest that the policy resulted in additional 443,000 cars sold in the neighboring cities (within 500 km of Beijing) from 2011-2013, compared to if the policy had not been implemented. 35%-40% of the car growth reduction stipulated by the policy simply spilled over to neighboring cities. The significance of the policy leakage necessitates positioning Beijing’s urban transportation in a broader context and executing regional collaboration.

Keywords: Beijing, car ownership, policy, policy leakage, license plate lottery, synthetic control, difference-in-differences, treatment effects
1. INTRODUCTION

Beijing, China, has experienced rapid motorization over the past decades. Driven by urbanization and extraordinary economic growth (with GRP growing at about 13% a year from 2003-2010), the stock of Beijing’s private cars increased from 929,000 in 2003 to 3,566,000 in 2010 (40). This motorization has also given rise to problems such as air pollution and traffic congestion. With an annual average PM10 concentration of 121 micrograms per cubic meter in 2010, Beijing often ranked among the worst Chinese cities in terms of air quality, significantly exceeding World Health Organization recommended limits (28). In 2010, Beijing was also ranked as one of the most congested cities in the world (23).

In response to these issues, Beijing’s city government developed a series of traffic demand management strategies. Early approaches included a parking restriction system in 1998, a vehicle purchase tax in 2004, and a low-cost public transportation policy in 2007 (40). Realizing that these approaches were not enough, Beijing used the 2008 Olympic Games as a unique opportunity to implement the first city-wide private car use restriction in China. Due to the effectiveness of the regulation during the Olympic period, the city then shifted to a long term one-day-per-week driving restriction policy (32). Despite temporary traffic relief in 2008 and 2009, continued private car registrations in Beijing during 2009 and 2010 gradually brought Beijing’s traffic congestion back to the level observed prior to the implementation of the use restriction (40).

This led Beijing to adopt a complementary car ownership restrictions policy in 2011, which limits the number of private car licenses that are allowed to be registered in the city through a lottery allocation mechanism, effectively capping the number of new local car sales (39). According to this policy, a license plate is required if a resident wants to buy a new car, buy a second-hand car, accept a gifted car, or transfer a non-local car registration to Beijing. And there is a fixed quota of car license plates that are allocated among residents monthly or bimonthly.

Potential Effectiveness of Beijing’s Car Ownership Restriction Policy

From its implementation in January 2011, Beijing’s car ownership lottery allocated about 240,000 licenses a year (20,000 a month) until 2013, after which the annual quota was reduced to 150,000. Comparing this small number of private cars allocated to the high growth-rate of car numbers prior to policy implementation (529,000 additional cars from 2008-2009, or an 23.11% annual growth rate) as well as to the high number of entrants now waiting for a license in the lottery suggests that the policy has been effective in curbing growth in new vehicle ownership (28). Informed by studies of car ownership restriction auctions in Singapore and Shanghai (16, 24, 25, 38, 46), researchers have attempted to estimate the impact of Beijing’s car ownership restriction lottery on the number of cars in the city. Yang et al. (2014) found that in the first few years after the adoption of the policy, growth in the number of cars in Beijing has been sharply reduced (40). Zhang (2014) estimated that the license plate lottery policy was responsible for a reduction of approximately 1.053 million vehicles from 2011-2013 (42). However, these studies often fail to account for potential noncompliant behavior that may reduce the effectiveness of the policy.

Potential Ineffectiveness of Beijing’s Car Ownership Restriction Policy

Given the limited jurisdictional reach of Beijing’s policy, there is potential for noncompliance by residents. In Shanghai, survey studies investigating the issue of noncompliance at the individual-
level have shown that a significant proportion (28%) of drivers obtained their car license plates from neighboring municipalities rather than participating in that city’s auction policy (20). And anecdotal evidence suggests similar behavior from residents of Beijing, who may purchase and register cars in neighboring cities rather than participate in the lottery (31, 35). For instance, one news article published in March 2011 reported that nearly 1,000 Beijing residents had applied for new car license plates in the city of Langfang in Hebei Province specifically “to circumvent the capital’s car registration lottery” (19). In 2013, another article reported that drivers in Beijing who spend an extra 1,500 yuan ($250) can obtain a license plate from Zhuozhou in Baoding city, Hebei—about an hour’s drive from Beijing (26).

Procuring a residence permit may be one obstacle for Beijing residents to register their cars in other cities to circumvent the ownership restriction. For example, to register a car license plate in neighboring Hebei province, a residence permit in Hebei is required alongside with a car purchase certificate and ID of the person who wants to obtain the license plate. In practice, however, these residence permits are relatively easy to obtain for cities outside of Beijing. News articles suggest that the property ownership or renter certificates needed were relatively easy to obtain in the early years of the policy, with many individuals procuring them through friends or family in the area or third-party agents who created a “black market” for these permits (7).

Therefore, there is significant anecdotal evidence that non-compliant behavior in response to Beijing’s car ownership restriction may have resulted in “policy leakage.” However, to date no study has attempted to test the significance or measure the magnitude of the policy leakage from Beijing’s car ownership restriction policy.

Our Approach: Quantifying Policy Leakage

In this study, we take an in-depth look at potential leakage around Beijing’s car ownership restriction policy to better understand the real effectiveness of this policy in reducing the total number of new private cars in the city.1 Using difference-in-differences analysis, this study isolates the causal effect of the implementation of Beijing’s car ownership restriction policy on the growth of private cars in neighboring cities. The underlying logic is that any statistically anomalous growth of private cars in these neighboring cities can be attributed to Beijingers obtaining non-local license plates from these cities to bypass the car ownership restriction in Beijing. Acknowledging that other socio-economic factors may also contribute to the rise of private car sales in neighboring cities, we use the synthetic control method to control for these confounding variables. This approach allows us to assess the amount of policy leakage of Beijing’s car ownership restriction, and quantify the actual reduction of new private cars sold in and around Beijing after the policy intervention. Then accounting for this policy leakage, we consider how effective Beijing’s car ownership restriction actually was in reducing private car growth in the region.

The rest of the paper is organized as follows. Section 2 describes our data and econometric models. Section 3 present our main results quantifying the policy leakage in neighboring cities. Section 4 then compares this policy leakage to the hypothetical number of private cars avoided by Beijing’s

1For this study we consider private cars, or sedans owned by individuals. In 2010, private cars accounted for 91.2% of all the privately-owned vehicles (including coaches, motorcycles, and three-wheelers) in Beijing according to the City Yearbook.
policy in the absence of any policy leakage (assuming no policy leakage). This gives us an estimate of the actual effectiveness of Beijing’s policy, accounting for policy leakage. Section 5 then discusses potential implications of these findings for policymakers in Beijing and its surrounding cities. We conclude by summarizing our findings and noting areas for future research in Section 7.

2. DATA AND ECONOMETRIC MODELS

In this study, we use a difference-in-differences (DID) approach to estimate the impact of Beijing’s car ownership restriction policy on the number of private cars in Beijing’s neighboring cities. This method quantifies the differential effect of a “treatment” (the implementation of Beijing’s car ownership restriction policy) on a “treatment group” (Beijing’s neighboring cities) versus a “control group” in a quasi-natural experiment. The validity of this approach rests on the assumption that the treatment and control groups would have followed the same trend in private car growth during the study period in the absence of the treatment. Therefore the choice of study period, treatment group, and control group are critical modeling decisions to ensure accuracy of the results.

Data

We take as our dependent variable the total number of cars in each city. The independent variables include:

1. Socioeconomic characteristics of the cities, including administrative area per capita, GDP per capita, total registered population, average wage per capita, and average government expenditure per capita in yuan;

2. Urbanization rate;

3. Statistics on the coverage of the transportation network and availability of alternative modes, such as highway length (m) per 1,000 persons, road area (m²) per capita, taxi number per 1,000 persons, and bus number per 1,000 persons.

We collect these data for 287 cities in China for the period 2006-2013 from CEIC’s China Premium Database (15). We then manually verified and supplemented the data using information from China’s City Statistical Yearbook for each year provided by the National Bureau of Statistics and other provincial and municipal statistical yearbooks.

Based on previous literature (27, 36, 41), we argue that this set of independent variables covers the main variables that might explain car ownership levels over time or across cities. By controlling for these variables, we can be confident that our measured difference in number of private cars in the pre- and post-treatment period is due to the implementation of the policy and not some time trends or city-to-city variations in socio-economic variables or urban and transport system characteristics.

Study Period

On December 13, 2010, Beijing announced an unofficial plan to cap private car registrations. Only 11 days later (on December 24, 2010), Beijing froze all new car registrations until the license plate lottery policy took effect on January 1, 2011 (40). Therefore, we take the years up until 2010 as our pre-treatment period and 2011 onward as our post-treatment period.

2The time window between announcement and implementation of the policy was so short that anticipatory car purchasing at the end of 2010 was likely very limited.
Specifically, we model private car ownership trajectories from 2006-2013 in each city, with 2006-2010 as the pre-treatment period and 2011-2013 as the post-treatment period. While data are available for years after 2013, we choose this cutoff to avoid potential bias introduced by the adoption of similar car ownership restrictions in other Chinese cities starting in 2014: including Tianjin (December 15, 2013), Hangzhou (March 26, 2014), and Shenzhen (December 31, 2014) (34). To avoid sudden increase in car sales just before the implementation of these policies, each of these policies went into effect almost immediately after their announcements. The choice of treatment period also avoids any confounding effect from a change in Beijing’s related car use restriction policy in 2014, which reduced the valid period for non-local car driving permits from half a year to 7 days, making it more difficult for non-local cars to drive in Beijing.

Treatment Group Selection
Using Geographic Distance to Define a Treatment Boundary
We choose to use geographic distance to Beijing to define our treatment group. We assume that nearby cities will be more affected by Beijing’s car ownership restriction policy compared with other cities. The policy leakage is likely to be stronger in neighboring cities of Beijing than in other cities far from Beijing for two reasons. First, it is less cost and time consuming to travel to neighboring cities for car registration and annual inspection (30). Second, a great number of immigrants in Beijing originate from these neighboring cities. This might suggest that cities geographically close to Beijing may also be close in terms of social distance; in other words, Beijing residents have stronger connections with nearby rather than far-away cities. For example, neighboring Hebei Province accounted for 21.3% of Beijing’s immigrant population in 2015, well ahead of second-place Henan which was the origin of 11% of Beijing’s immigrant population (1). Since local residential permits are needed for private car registration in Beijing, it is natural for these immigrants to get car licenses from their hometowns.

As a cross-validation, we check Beijing’s official records of cars that have committed traffic violations and find that cars registered in the cities closest to Beijing in Hebei Province have the highest number of vehicle violations behind cars registered in Beijing. Furthermore, the percentage of car violation cases in Beijing drops significantly for non-local cars registered in city further away from Beijing—with the percentage of violations falling to below 2% for cities beyond 500 to 600km from Beijing (see Figure 1). Assuming that enforcement of traffic violations is independent of where the car is registered, we can infer that there is a significantly higher proportion of non-local cars driving on Beijing’s streets from nearby cities. This further substantiates the relationship between geographical distances to Beijing and the magnitude of car inflows to Beijing and provides additional evidence for our choice of treatment boundary.

Determining the Appropriate Boundary
Next we consider the appropriate boundary for our treatment area. We begin by deriving a measure of the driving distance \(D_i\) between a Beijing and each city \(i\). This driving distance is calculated using the Google Maps API, from which we extracted the shortest path driving distance using existing road networks between each city’s geometric center (18).

Using this distance, we define our treatment group as those cities that lie within a 500 km driving distance of Beijing. This boundary of the treatment area makes sense for our application, since a
500 km distance translates to roughly 5.5 hours of driving at an average speed of 91 km/hr (or 56 mph); this means people can leave Beijing, complete their car registration procedures in a neighboring cities, and return home all in one day. With this 500 km boundary, our treatment group includes 31 cities located in 6 neighboring provinces: Hebei, Tianjin, Shandong, Shanxi, Inner Mongolia, and Liaoning (Figure 2). In 2013, the total population of the 31 cities was about 153 million, which accounted for about 12% of China’s total population at that time.

Given that the choice of the boundary can be somewhat uncertain, we also test the sensitivity of our models to this choice of treatment boundary following an approach similar to that used by Zheng, et al. (2017) (44). In addition to the 500 km boundary, we also specify models with 400 km and 600 km boundaries. We also include cities’ driving distance to Beijing as a key variable to study the variation of the treatment effect over distance. As we show in Section 3, our model result suggests that 500 km is the appropriate boundary for treated city selection.

Control Group Synthesis

Given the heterogeneity of China’s cities, we use a synthetic control method to define our control group (5). By creating a weighted combination of non-treated cities for each treated city, this method creates a group of control cities that are approximately equivalent to the treatment cities in terms of the pre-intervention outcome (in this case, the number of private cars prior to the Beijing car ownership restriction) and the independent variables included in the model. This data-driven procedure reduces discretion in the choice of the control group (3) and also avoids problems arising in conventional DID analysis if the number of treated subjects is small relative to the number of control subjects (13).

The synthetic control method

We adopt the synthetic control based on recommendations in existing literature (4, 6). Our goal is to construct a single synthetic control city for each treated city such that the synthetic control city

3 This includes 5 more cities: Laiwu, Weifang, Panjin, Jining and Heze.
resembles the treated city for the pre-treatment period in all relevant predictors: administrative area
per capita, GDP per capita, total registered population, annual wage per capita, urbanization rate,
highway length per 1,000 people, road area per capita, taxi number per 1,000 people, bus number
per 1,000 people, government expenditure per capita. Then, for each treated city, we solve for \(W^* \) that minimizes:

\[
\|X_1 - X_0 W\|_V = \sqrt{(X_1 - X_0 W)'V(X_1 - X_0 W)}
\]

(1)

where \(X_1 \) represents the vector of the pre-treatment predictors for the treated city, \(X_0 \) is a matrix
with the same information for the donor cities. \(W \) is a weight vector indicating the weights of
the donor cities in the synthetic city that sum to one. \(V \) is a diagonal matrix which specifies
the relative importance of the predictors. The optimal \(V \) minimizes the mean square error of the
outcome estimation. In order words, we choose \(V \) based on:

\[
V^* = \arg\min_V (Z_1 - Z_0 W^*(V))'(Z_1 - Z_0 W^*(V))
\]

(2)

where \(Z_1 \) is the vector of the observed pre-intervention outcome for the treated city, and \(Z_0 \) is the
matrix containing the same information for the donor cities. We use R package “synth” (4) to
generate the synthetic control cities from a pool of 188 donor cities discussed below.

4 Donor pool construction

To apply the synthetic control method discussed above, we must first construct a donor pool of non-
treated cities from which to synthesize our control cities. We begin with the set of all non-treated
cities, then exclude cities that may have been affected by the treatment (Beijing’s car ownership
restriction policy) or that may have suffered other large, idiosyncratic shocks that could affect the
outcome of interest (the total number of cars registered in the city).

First, we exclude cities that are within a 1,000 km driving distance of Beijing but outside our treat-
ment buffer because these cities may be slightly affected by Beijing’s car ownership restriction
policy due to their vicinity to the city (see Figure 2). Cities in this area are not considered “clean”

enough to be included in the control group because they may experience some residual spillover
effects from the treatment. Therefore, we follow the advice of Abadie (2019) and exclude cities in
reasonably close geographical proximity (within 1,000 km driving distance) to Beijing which may
provide a biased estimate of the counterfactual outcome without treatment (2).

Second, we exclude cities that are within a 500 km driving distance of Guangzhou, because these
cities may be subject to the policy leakage of Guangzhou’s car ownership restriction policy that
was adopted towards the end of our study period (in 2012). Note that Guiyang also implemented a
license plate policy in 2011 during our study period, but this policy is fundamentally a car use re-
striction rather than a car ownership restriction; therefore, Guiyang and its surrounding cities were
not excluded from the donor pool of non-treated cities. Shanghai also adopted a car ownership
restriction policy in 1994 and a non-local car use restriction policy in 2002. Both of these policies
were adopted well before the start of our study period and therefore can be seen as “constant”
throughout from 2006-2013. Therefore, we do not exclude Shanghai or its surrounding cities from
our donor pool. We also include city fixed effects in all of our models to help control for residual
shocks that could affect the outcome of interest (number of personal cars registered) in each city.
Even after excluding these cities, our donor pool of non-treated cities still adequately covers the full distribution of pre-treatment characteristics observed in our treatment cities (see Figure 3). In fact, the plots show that the distribution of each characteristic in the donor group has a wider range than the distribution of that characteristic in the treated group. This means that there are no variable has an extreme values in the treatment group that could not be reflected in a synthetic city based on the donor group. We are thus confident that, using this donor pool, we can construct a synthetic control city that adequately matches each of our treated cities in terms of both dependent and independent variables within a 500 km driving distance of Beijing.

Quality of the Synthetic Control Group compared to all Non-Treated Cities
A good control group should exhibit similar characteristics to the treatment cities prior to the introduction of the car ownership restriction in 2011. Therefore, to check the quality of our controls, we can begin by comparing the pre-treatment characteristics of our treated cities with the non-treated cities in our donor pool and our synthetic control cities (see Table 1 and Figure 3). The summary statistics in Table 1 suggest that, prior to the implementation of Beijing’s car ownership restriction, the synthetic control cities generally resemble their treated counterparts on all dependent and independent variables. In addition, the similarity of the variable distributions between the treated and synthetic cities in Figure 3 confirms that the synthetic control cities closely approximate the
values of all variables for the treated cities during the pre-treatment period. This exploration of
pre-treatment characteristics clearly show that the synthetic control approach produces a better
comparison group for the treated cities than the naïve control group of all non-treated cities in the
donor pool.

TABLE 1: Pre-treatment characteristics averaged over cities and years (2006-2010)

<table>
<thead>
<tr>
<th></th>
<th>Treated</th>
<th>Synthetic</th>
<th>Donor (non-treated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of private cars (millions)</td>
<td>243.15</td>
<td>246.54</td>
<td>121.5</td>
</tr>
<tr>
<td></td>
<td>(173.71)</td>
<td>(171.82)</td>
<td>(149.4)</td>
</tr>
<tr>
<td>Administrative area (m^2) per capita</td>
<td>4541.8</td>
<td>4912.61</td>
<td>6771.79</td>
</tr>
<tr>
<td></td>
<td>(4714.95)</td>
<td>(5232.66)</td>
<td>(17461.68)</td>
</tr>
<tr>
<td>GDP (K RMB) per capita</td>
<td>29.13</td>
<td>24.21</td>
<td>22.8</td>
</tr>
<tr>
<td></td>
<td>(20.29)</td>
<td>(12.44)</td>
<td>(18.47)</td>
</tr>
<tr>
<td>Total registered population</td>
<td>4.8</td>
<td>5.02</td>
<td>4.18</td>
</tr>
<tr>
<td></td>
<td>(2.59)</td>
<td>(2.55)</td>
<td>(3.17)</td>
</tr>
<tr>
<td>Annual total wage (K RMB)/total population</td>
<td>2.64</td>
<td>2.27</td>
<td>2.21</td>
</tr>
<tr>
<td></td>
<td>(1.88)</td>
<td>(1.15)</td>
<td>(1.94)</td>
</tr>
<tr>
<td>Urbanization rate</td>
<td>0.31</td>
<td>0.3</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>(0.21)</td>
<td>(0.13)</td>
<td>(0.21)</td>
</tr>
<tr>
<td>Highway length (m) per 1,000 people</td>
<td>2994.32</td>
<td>2890.95</td>
<td>2950.93</td>
</tr>
<tr>
<td></td>
<td>(1265.4)</td>
<td>(956.43)</td>
<td>(1512.09)</td>
</tr>
<tr>
<td>Road area (m^2) per capita</td>
<td>3.31</td>
<td>2.79</td>
<td>2.85</td>
</tr>
<tr>
<td></td>
<td>(2.52)</td>
<td>(1.8)</td>
<td>(2.76)</td>
</tr>
<tr>
<td>Taxi number per 1,000 people</td>
<td>1</td>
<td>0.73</td>
<td>0.63</td>
</tr>
<tr>
<td></td>
<td>(0.71)</td>
<td>(0.44)</td>
<td>(0.66)</td>
</tr>
<tr>
<td>Bus number per 1,000 people</td>
<td>0.24</td>
<td>0.25</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>(0.21)</td>
<td>(0.17)</td>
<td>(0.24)</td>
</tr>
<tr>
<td>Government expenditure (RMB) per capita</td>
<td>3114.1</td>
<td>2903.7</td>
<td>2957.13</td>
</tr>
<tr>
<td></td>
<td>(1533.85)</td>
<td>(932.26)</td>
<td>(1748.01)</td>
</tr>
<tr>
<td>Total number of cities</td>
<td>31</td>
<td>31</td>
<td>188</td>
</tr>
</tbody>
</table>

Note: Table values represent means with standard deviations in parentheses.
As further evidence, we compare the time trends of the average number of private cars between the treated cities and our two different control groups (all non-treated cities and the synthetic cities) in Figure 4. The first panel in Figure 4 shows that using all non-treated cities as the control could be problematic, since their private car ownership trends overtime are not parallel, even before the implementation of Beijing’s policy in 2011 (the treatment). The second panel in Figure 4 shows that when using the synthetic cities as the control, the time trends between the treated cities and synthetic groups fit well before the policy implementation in 2011. After 2011, the treated cities appear to show an increase in private car population compared to the synthetic controls, which suggests the presence of some policy leakage (which we will measure using the DID models introduced in the next section). Overall, these visualizations suggest that the synthetic cities provide a much better control than the group of all non-treated cities in the donor pool.
Model Specifications

Having determined the appropriate time period, treatment group, and control group, we can now estimate our DID models. The base model is expressed mathematically as in Equation (3):

$$
Y_{it} = \rho_1 [After2010_t \ast T_i] + \rho_2 [Year2012_t \ast T_i] + \rho_3 [Year2013_t \ast T_i] + \rho_4 (t - 2010) + \rho_5 [(t - 2010) \ast T_i] + \alpha_1 X_{it} + c_i + \mu_t + \varepsilon_{it}
$$

where the subscripts i and t refer to city and year, respectively; T_i is a dummy variable that is 1 for the treated cities and 0 otherwise; $After2010_t$ is a dummy variable index for years after 2010; $Year2012_t$ and $Year2013_t$ take a value of 1 for those years and 0 otherwise. To remove the underlying time trend, we include $(t - 2010)$, which takes a value of zero in 2010. We also control for the heterogeneity in time trend across the treatment and control groups by incorporating $[(t - 2010) \ast T_i]$. X_{it} denotes the control variables; c_i is the city fixed effect; μ_t denotes the time fixed effect which takes the value 1 after year 2010 and 0 otherwise; and ε_{it} is a random error term.

Of particular interest is the estimated value of ρ_1, which represents the average treatment effect of the policy intervention through 2011 to 2013.

The impact of Beijing’s car ownership restriction policy for a treated city could depend on its distance to Beijing. It is reasonable to assume that the cities closer to Beijing are more likely to be affected by Beijing’s car ownership restriction policy than those further away. To capture the distance variation, we further interact the distance and squared distance of the city with the DID term. This distance-decayed treatment model can be specified as in Equation (4), where D_i represents the driving distance from Beijing to city i derived from the Google Maps API:

$$
Y_{it} = \rho_1 [After2010_t \ast T_i] + \rho_2 [After2010_t \ast T_i \ast D_i] + \rho_3 [After2010_t \ast T_i \ast D_i^2] + \rho_4 (t - 2010) + \rho_5 [(t - 2010) \ast T_i] + \alpha_1 X_{it} + c_i + \mu_t + \varepsilon_{it}
$$

While it is conventional practice to include fixed effects for each individual year, literature has suggested that including a time trend and an indicator of the post-intervention period is often sufficient for capturing the time effect. Recognizing that we have a somewhat limited sample size (with only 31 treated cities and 31 synthetic controls for each year), we value the model parsimony of including a time trend term rather than individual year dummies. Figure 4 also empirically suggests that the actual time trend can be well approximated with a linear term.

FIGURE 4: Trend in average number of private cars for (1) treated vs. donor cities and (2) treated vs. synthetic cities

1 Model Specifications
2 Having determined the appropriate time period, treatment group, and control group, we can now estimate our DID models. The base model is expressed mathematically as in Equation (3):

$$
Y_{it} = \rho_1 [After2010_t \ast T_i] + \rho_2 [Year2012_t \ast T_i] + \rho_3 [Year2013_t \ast T_i] + \rho_4 (t - 2010) + \rho_5 [(t - 2010) \ast T_i] + \alpha_1 X_{it} + c_i + \mu_t + \varepsilon_{it}
$$

where the subscripts i and t refer to city and year, respectively; T_i is a dummy variable that is 1 for the treated cities and 0 otherwise; $After2010_t$ is a dummy variable index for years after 2010; $Year2012_t$ and $Year2013_t$ take a value of 1 for those years and 0 otherwise. To remove the underlying time trend, we include $(t - 2010)$, which takes a value of zero in 2010. We also control for the heterogeneity in time trend across the treatment and control groups by incorporating $[(t - 2010) \ast T_i]$. X_{it} denotes the control variables; c_i is the city fixed effect; μ_t denotes the time fixed effect which takes the value 1 after year 2010 and 0 otherwise; and ε_{it} is a random error term.

Of particular interest is the estimated value of ρ_1, which represents the average treatment effect of the policy intervention through 2011 to 2013.

The impact of Beijing’s car ownership restriction policy for a treated city could depend on its distance to Beijing. It is reasonable to assume that the cities closer to Beijing are more likely to be affected by Beijing’s car ownership restriction policy than those further away. To capture the distance variation, we further interact the distance and squared distance of the city with the DID term. This distance-decayed treatment model can be specified as in Equation (4), where D_i represents the driving distance from Beijing to city i derived from the Google Maps API:

$$
Y_{it} = \rho_1 [After2010_t \ast T_i] + \rho_2 [After2010_t \ast T_i \ast D_i] + \rho_3 [After2010_t \ast T_i \ast D_i^2] + \rho_4 (t - 2010) + \rho_5 [(t - 2010) \ast T_i] + \alpha_1 X_{it} + c_i + \mu_t + \varepsilon_{it}
$$

While it is conventional practice to include fixed effects for each individual year, literature has suggested that including a time trend and an indicator of the post-intervention period is often sufficient for capturing the time effect. Recognizing that we have a somewhat limited sample size (with only 31 treated cities and 31 synthetic controls for each year), we value the model parsimony of including a time trend term rather than individual year dummies. Figure 4 also empirically suggests that the actual time trend can be well approximated with a linear term.
3. TOTAL POLICY LEAKAGE IN NEIGHBORING CITIES

In this section we present the results of our difference-in-differences models evaluating the growth in private cars in Beijing’s neighboring cities as a result of Beijing’s car ownership restriction. The choice of boundary of the treatment area can have an impact on our treatment city selections and model estimation results. Therefore, we first compare results for the average treatment effect using 400 km, 500 km, and 600 km treatment boundaries and Equation (3). We then model the spatial decay of the treatment effect by including an interaction term with distance using Equation (4). Having determined the most appropriate treatment boundary, we translate our estimated average treatment effect into a total number of private cars registered in neighboring cities as a result of Beijing’s car ownership restriction policy.

Treatment Effects with Different Boundaries

We present results estimated from Equation (3) in Table 2. We test the sensitivity of these results to the boundary distance used to define the treated cities. Columns (1), (3) and (5) test for the yearly average treatment effect of Beijing’s car ownership restriction policy on neighboring cities across 2011-2013, whereas Columns (2), (4) and (6) take into account the heterogeneity of the three years in the post-treatment period.

The result shows that if we only include cities within 400 km driving distance from Beijing as the treated cities as in Column (1), the impact of Beijing’s car ownership restriction policy on car numbers in the treated cities is statistically insignificant. This insignificant effect may be partially attributed to the limited number of cities within 400 km, which reduces the model sample size and statistical power. When we change the treatment boundary from 400 km to 500 km, the treatment effect becomes significant. Column (3) shows that, on average, the number of private cars in treated cities within 500 km driving distance from Beijing grew by about 5% more than in their control city counterparts after Beijing’s policy was implemented. The magnitude and significance of the result are consistent even if we take the yearly heterogeneity into account as in Column (4). However, the coefficients for \(\text{Year2012}_i \times T_i \) and \(\text{Year2013}_i \times T_i \) are negative but not statistically significant, which suggests that the leakage effects in 2012 and 2013 do not differ significantly from the treatment effect in 2011. Further expanding the treatment boundary to 600 km as in Columns (5) and (6), we see that the estimated treatment effect is slightly lower, but still significant. The decrease of treatment effect with the expansion of the treatment boundary makes intuitive sense because Beijing residents may not want to take the trouble to register their cars in cities that are further away. The insignificant coefficient for \((t - 2010) \times T_i \ (\rho_S) \) shows that the heterogeneity in time trend across the treatment and control groups is insignificant.
TABLE 2: Treatment effect of Beijing’s car ownership restriction policy on number of private cars in neighboring cities estimated using Equation (3)

<table>
<thead>
<tr>
<th>The maximum distance to Beijing for the treatment cities:</th>
<th>400 km</th>
<th>500 km</th>
<th>600 km</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>After2010, * T_i (ρ_1)</td>
<td>0.104</td>
<td>0.110</td>
<td>0.050**</td>
</tr>
<tr>
<td></td>
<td>(0.064)</td>
<td>(0.080)</td>
<td>(0.021)</td>
</tr>
<tr>
<td>Year2012, * T_i (ρ_2)</td>
<td>-0.012</td>
<td>-0.020</td>
<td>-0.020*</td>
</tr>
<tr>
<td></td>
<td>(0.024)</td>
<td>(0.021)</td>
<td>(0.012)</td>
</tr>
<tr>
<td>Year2013, * T_i (ρ_3)</td>
<td>-0.036</td>
<td>-0.003</td>
<td>-0.005</td>
</tr>
<tr>
<td></td>
<td>(0.044)</td>
<td>(0.028)</td>
<td>(0.016)</td>
</tr>
<tr>
<td>t - 2010 (ρ_4)</td>
<td>0.232***</td>
<td>0.243***</td>
<td>0.176***</td>
</tr>
<tr>
<td></td>
<td>(0.082)</td>
<td>(0.092)</td>
<td>(0.026)</td>
</tr>
<tr>
<td>(t - 2010), * T_i (ρ_5)</td>
<td>-0.011</td>
<td>-0.004</td>
<td>-0.007</td>
</tr>
<tr>
<td></td>
<td>(0.023)</td>
<td>(0.012)</td>
<td>(0.010)</td>
</tr>
<tr>
<td>Administrative area</td>
<td>1.106</td>
<td>1.089</td>
<td>0.720***</td>
</tr>
<tr>
<td></td>
<td>(0.735)</td>
<td>(0.745)</td>
<td>(0.213)</td>
</tr>
<tr>
<td>GDP</td>
<td>0.207</td>
<td>0.178</td>
<td>0.520***</td>
</tr>
<tr>
<td></td>
<td>(0.126)</td>
<td>(0.131)</td>
<td>(0.010)</td>
</tr>
<tr>
<td>Population</td>
<td>1.385***</td>
<td>1.348***</td>
<td>1.054</td>
</tr>
<tr>
<td></td>
<td>(0.489)</td>
<td>(0.499)</td>
<td>(0.085)</td>
</tr>
<tr>
<td>Wage</td>
<td>-0.176</td>
<td>-0.175</td>
<td>-0.314***</td>
</tr>
<tr>
<td></td>
<td>(0.110)</td>
<td>(0.113)</td>
<td>(0.079)</td>
</tr>
<tr>
<td>Urbanization rate</td>
<td>0.178</td>
<td>0.165</td>
<td>0.111</td>
</tr>
<tr>
<td></td>
<td>(0.177)</td>
<td>(0.185)</td>
<td>(0.167)</td>
</tr>
<tr>
<td>Length of highway</td>
<td>0.072</td>
<td>0.095</td>
<td>0.069</td>
</tr>
<tr>
<td></td>
<td>(0.109)</td>
<td>(0.120)</td>
<td>(0.066)</td>
</tr>
<tr>
<td>Road area</td>
<td>-0.073</td>
<td>-0.073</td>
<td>-0.148***</td>
</tr>
<tr>
<td></td>
<td>(0.050)</td>
<td>(0.054)</td>
<td>(0.051)</td>
</tr>
<tr>
<td>Taxi number</td>
<td>-0.036</td>
<td>-0.039</td>
<td>-0.068</td>
</tr>
<tr>
<td></td>
<td>(0.084)</td>
<td>(0.093)</td>
<td>(0.069)</td>
</tr>
<tr>
<td>Bus number</td>
<td>0.017</td>
<td>0.022</td>
<td>0.067**</td>
</tr>
<tr>
<td></td>
<td>(0.049)</td>
<td>(0.047)</td>
<td>(0.027)</td>
</tr>
<tr>
<td>Government expenditure</td>
<td>-0.187</td>
<td>-0.222</td>
<td>0.018</td>
</tr>
<tr>
<td></td>
<td>(0.179)</td>
<td>(0.208)</td>
<td>(0.109)</td>
</tr>
<tr>
<td>Observations</td>
<td>240</td>
<td>240</td>
<td>496</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.991</td>
<td>0.991</td>
<td>0.983</td>
</tr>
</tbody>
</table>

Note: Standard errors in parentheses are clustered on cities. The dependent variable and the socio-economic variables are log transformed. Administrative area, GDP, wage, road area, and government expenditure are all expressed per capita; length of highway, taxi number and bus number are expressed per 1,000 people. All the models take into account city fixed effect and time fixed effect (which assigns 0 to pre-treatment time and 1 to post-treatment time).

*p<0.1; **p<0.05; ***p<0.01
TABLE 3: Variation of the treatment effect in terms of cities’ distance to Beijing estimated using Equation (4) with a 600 km treatment boundary

<table>
<thead>
<tr>
<th>Interaction term between distance and treatment:</th>
<th>None</th>
<th>Linear</th>
<th>Quadratic</th>
</tr>
</thead>
<tbody>
<tr>
<td>After2010, Ti (ρ₁)</td>
<td>0.048*, 0.025</td>
<td>0.218***, 0.051</td>
<td>0.118, 0.097</td>
</tr>
<tr>
<td>After2010, Ti * Di (ρ₂)</td>
<td>−0.00044**, 0.00019</td>
<td>0.00025, 0.00072</td>
<td>−0.0000, 0.0000</td>
</tr>
<tr>
<td>After2010, Ti * Di² (ρ₃)</td>
<td></td>
<td></td>
<td>−0.0000, 0.0000</td>
</tr>
<tr>
<td>t − 2010 (ρ₄)</td>
<td>0.173***, 0.029</td>
<td>0.179***, 0.027</td>
<td>0.175***, 0.026</td>
</tr>
<tr>
<td>(t − 2010) * Ti (ρ₅)</td>
<td>−0.007, 0.010</td>
<td>−0.008, 0.010</td>
<td>−0.007, 0.009</td>
</tr>
<tr>
<td>Administrative area</td>
<td>0.438, 0.384</td>
<td>0.457, 0.362</td>
<td>0.452, 0.357</td>
</tr>
<tr>
<td>GDP</td>
<td>0.372***, 0.125</td>
<td>0.414***, 0.133</td>
<td>0.421***, 0.130</td>
</tr>
<tr>
<td>Population</td>
<td>0.680, 0.473</td>
<td>0.620, 0.466</td>
<td>0.639, 0.465</td>
</tr>
<tr>
<td>Wage</td>
<td>−0.282***, 0.079</td>
<td>−0.302***, 0.068</td>
<td>−0.289***, 0.065</td>
</tr>
<tr>
<td>Urbanization rate</td>
<td>0.090, 0.111</td>
<td>0.115, 0.120</td>
<td>0.118, 0.121</td>
</tr>
<tr>
<td>Length of highway</td>
<td>0.044, 0.064</td>
<td>0.045, 0.063</td>
<td>0.049, 0.064</td>
</tr>
<tr>
<td>Road area</td>
<td>0.019, 0.085</td>
<td>0.008, 0.070</td>
<td>−0.007, 0.063</td>
</tr>
<tr>
<td>Taxi number</td>
<td>−0.033, 0.067</td>
<td>−0.065, 0.082</td>
<td>−0.056, 0.080</td>
</tr>
<tr>
<td>Bus number</td>
<td>0.004, 0.036</td>
<td>0.024, 0.035</td>
<td>0.025, 0.036</td>
</tr>
<tr>
<td>Government expenditure</td>
<td>0.069, 0.095</td>
<td>0.027, 0.118</td>
<td>0.032, 0.118</td>
</tr>
<tr>
<td>Observations</td>
<td>576</td>
<td>576</td>
<td>576</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.983</td>
<td>0.984</td>
<td>0.984</td>
</tr>
</tbody>
</table>

*Note: Di denotes the distance of city i to Beijing (in km). The dependent variable (total number of private cars) and the socio-economic variables are all log transformed. Administrative area, GDP, wage, road area, and government expenditure are all expressed per capita; length of highway, taxi number and bus number are expressed per 1,000 people. All the models take into account city fixed effect and time fixed effect.

*p<0.1; **p<0.05; ***p<0.01
Spatial Decay of Treatment Effect

We also test for the spatial decay of the treatment effect by including the interaction term between the distance to Beijing and the DID estimator using the 600km treatment boundary and Equation (4). Columns (2) and (3) in Table 3 employ linear and quadratic relationships between the distance to Beijing and the policy effect, respectively. With the linear relationship, the coefficients of the DID term and the interaction term are both significant as shown in Column (2), while in the model with the quadratic relationship, Column (3), the DID term and the interaction terms are both insignificant. Therefore, we focus on the spatial decay of the treatment effect using the linear model. The negative coefficient of the interaction term reflects that the effect declines by 0.04% every 1 km of driving distance away from Beijing within the 600 km boundary.

Using the intercept and slope coefficients in Column (2) of Table 3, we can estimate a linear relationship between the treatment effect and distance from Beijing, D_i (from 0 km to 600 km). Our model suggests that the impact of Beijing’s car ownership restriction policy on the private car population in neighboring cities declines with increasing distance to Beijing. We find that the treatment effect decays to zero around 500 km driving distance from Beijing, providing further evidence that it is reasonable to choose 500 km as the boundary for selecting the treated cities since the treatment effect vanishes beyond this boundary.

Estimated Treatment Effect in Terms of Total Number of Private Cars

Based on the above analysis, we revisit model (3) in Table 2 and use it to estimate the increase in total number of private cars in Beijing’s neighboring cities resulting from Beijing’s car ownership restriction policy. We find that the 5.0% increase in private cars translates to approximately 443,000 additional cars sold in the 31 cities within a 500 km driving distance of Beijing in the three-year period from 2011 to 2013. This number is calculated by taking 300,000 (the average number of private cars in treated cities in the pre-treatment period before 2011 and in synthetic cities during 2006-2013), multiplying it by 31 (the number of treated cities), and accounting for the average treatment effect from 2011 to 2013 which is 0.050: $300,000 \times 31 \times (1 - 1/(1 + 0.05)) = 442,857$ cars. Note that the variation of the effect across 2011-2013 is insignificant as evidenced by Column (4) in Table 2, thus the 443,000 cars is the increase in the number of cars in treated cities due to the cumulative treatment effect of Beijing’s policy from 2011 up until 2013.

4. EFFECT OF BEIJING’S CAR OWNERSHIP RESTRICTION ON PRIVATE CAR GROWTH

Given this significant policy leakage in Beijing’s neighboring cities, a natural follow-up question is: how effective is Beijing’s car ownership restriction in reducing private car growth discounting this leakage?

To answer this question, we must first estimate a no-policy counterfactual—a projection of the growth in private car registrations that would have occurred from 2011-2013 had no policy been implemented. We follow the approach developed by Yang et al. (2014) that calculates the counterfactual sale of private cars in Beijing under the no-policy scenario relying on the elasticity of demand for cars with respect to Beijing’s Gross Regional Product (GRP) (40). With this method, we first record Beijing’s GRP from 2003 to 2013. Next, we calculate the historical elasticity of

5Many previous studies have shown that GDP/GRP is a key variable used to model and predict car ownership growth at the city and national level (21, 37, 40).
growth in the number of private cars with respect to GRP growth in our pre-treatment period 2003-2009, which gives us an average elasticity of 1.37 during these 7 years. We remove 2010 from our calculation in case there was a surge in demand at the end of the year when news of the car ownership restriction policy surfaced, but it was not yet in effect (although as noted previously the period for this anticipatory response was very short). Instead, we assume that the elasticity is 1.37 in 2010. Due to uncertainty in these projections, three scenarios are tested for sensitivity analysis based on Yang et al. (2014): (1) the elasticity remains constant from 2010 to 2013 (the high-growth scenario); (2) the elasticity falls linearly to 0.8 in 2020 (the medium-growth scenario), and (3) the elasticity falls linearly to 0.4 in 2020 (the low-growth scenario). The projected private car numbers in 2011-2013 for these three scenarios are shown in Figure 5. The medium-growth scenario is treated as the counterfactual for the following discussion. Under the medium-growth scenario, we project that private car registrations would have reached 5,647,000 in 2013 in the absence of any car ownership restriction policy.

![Historic and projected number of private cars in Beijing](image)

FIGURE 5: Projection of private car population in Beijing under multiple no-policy scenarios and under the policy assuming no leakage

We then compare these no-policy projections of the number of car registrations to actual car registrations in Beijing under the policy as diagrammed in Figure 5. Assuming no policy leakage, only as many new cars as there are license plates allocated by quota would be sold: an increase of only 527,000 cars from 3,566,000 in 2010 to 4,093,000 in 2013. Comparing this to our no-policy projections, we calculate the impact of Beijing’s car ownership restriction policy in reducing growth.
of private car sales assuming no policy leakage (i.e., the policy is 100% effective). We estimate that, ignoring leakage, Beijing’s policy blocked the registration of 1,119,000-1,275,000 new private cars (see Table 4.)

However, our DID models suggest that an additional 443,000 private cars were sold in neighboring cities in response to Beijing’s car ownership restriction policy. Comparing this estimated magnitude of policy leakage to the calculated car reduction assuming no policy leakage suggests that as much as 35%-40% of the growth in private car ownership that could have been reduced by the policy simply spilled over to neighboring cities (Table 4). In particular, taking the medium-growth scenario as an example, our study suggests that the actual reduction of private car registrations from 2011 to 2013 (accounting for policy leakage to neighboring cities) was 741,000 cars—only 62.6% of the 1,184,000 predicted assuming complete policy effectiveness.

TABLE 4: Estimated reduction in private car numbers in Beijing with and without accounting for policy leakage

<table>
<thead>
<tr>
<th>No-policy scenario (counterfactual projections)</th>
<th>Reduction of Beijing cars assuming no leakage</th>
<th>Policy leakage as % of reduction of Beijing cars assuming no leakage</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-growth—elasticity remains constant at 1.37 from 2010-2013</td>
<td>1,275,000</td>
<td>34.7%</td>
</tr>
<tr>
<td>Medium-growth—elasticity decreases linearly from 1.37 in 2010 to 0.8 in 2020</td>
<td>1,184,000</td>
<td>37.4%</td>
</tr>
<tr>
<td>Low-growth—elasticity decreases linearly from 1.37 in 2010 to 0.4 in 2020</td>
<td>1,119,000</td>
<td>39.6%</td>
</tr>
</tbody>
</table>

Note: Elasticity refers to the percentage change in the number of private cars with a 1% change in GRP.

5. **DISCUSSION**

Although the existence of policy leakage around car ownership restrictions has been covered by some existing literature (16, 20, 43), this research is the first to quantify this effect for Beijing’s car ownership restriction policy. We find that policy leakage undermines the effectiveness of Beijing’s policy by as much as 35%-40%. This presents a challenge for policymakers trying to curb growth in car ownership (and, indirectly, use) in the capital. This policy leakage fundamentally exists because the jurisdictional boundary of the policy (Beijing city) does not match the metropolitan scale of personal car ownership and use. In other words, there is an inherent tension between the local rationing of car ownership and the mobility of vehicles and people. Accordingly, we discuss two potential ways to address this policy leakage: engaging in collaborative policymaking at the regional scale or enacting additional local policies that make it more difficult for those registering cars in neighboring cities to bring their cars back into Beijing.

Regional Cooperation

One way to cope with the policy leakage issue would be to implement bureaucratic regimes that foster regional cooperation surrounding car ownership restrictions (43). This would require cities
neighboring Beijing to either join in implementing or at least enforcing Beijing’s car ownership restriction policy. However, there are three reasons why enforcing Beijing’s policy in neighboring cities may be difficult. First, the policy leakage actually generates positive fiscal gains for Beijing’s neighboring jurisdictions, which have the incentive to collect fees from cars that do not travel on their roads (33). Second, the channel of non-local licenses registration stimulated speculative activities, which included many car dealers and traders providing agent services. These activities not only generated a black market, but also removed barriers for the non-local license registrations (45). Finally, the ineffectiveness of the car ownership restriction policy may lead to loss of public faith in the ability of local government to enforce this type of regulation (20), potentially delegitimizing further regulations.

Local Actions to Address Noncompliance

The alternative to collective, regional enforcement is for policymakers in Beijing to enact additional policies within their limited jurisdiction that make non-local licenses less attractive. We already see evidence of this trend. During the first 3 years of policy implementation, the penalties for non-compliance were not very severe (35). Before 2014, permits allowing non-local cars to drive within Beijing’s 5th ring road only needed to be renewed once every 6 months (11). This made registering a new car in a neighboring city and then driving in Beijing on that non-local relatively simple and convenient. However, recently the government has taken measures to curb the inflow of non-local cars using Beijing’s streets. For example, in November 2013, the penalty for driving non-local cars in central areas during peak hours has been intensified, now amounting to 3 points deduction in addition to a fine of 100 yuan (10). At the beginning of 2014 the validity period of the permits for non-local cars to drive in Beijing was reduced from 6 months to 7 days (although the permits can be renewed without restrictions). Starting in November 2019, the authority has announced that cars not licensed by Beijing will only be allowed to renew their permits to enter the city 12 times a year, with each permit remaining effective for 7 days (9), and the restriction area for non-local cars was enlarged from the 5th ring road to the 6th ring road (8). This means that cars with non-local licenses will only be able to drive a maximum of 84 days of the year within Beijing’s 6 ring area.

This entire suite of “closure” policies discourages non-local cars from driving in Beijing. While making noncompliance with the car ownership restriction policy less attractive, these additional policies come with a cost. In addition to additional administrative overhead, these use restrictions may curtail the free flow of labor and materials between Beijing and its neighboring cities. Though originally designed for non-compliant Beijingers, these policies may unintentionally prevent people who occasionally ran errands in Beijing from entering the city, which raised new equity concerns (45). In addition, it raised debate about regional discrimination, since Beijing cars can drive in other cities without restrictions but not vise versa.

Other Potential Complementary Policies

The loopholes of the current policy design necessitate future policy adjustment. In the near-term, non-local car policies could be better nuanced. The evolution of Beijing’s non-local car related policies show that policymakers are aware of potential policy leakage and trying to address it. However, these additional policies come at a cost that may not be fully weighted against the benefits of improving the efficiency of the car ownership restriction. In order to avoid negative con-
sequences of these stricter non-local car policies, Beijing officials may want to consider careful
differentiation of "localized" non-local cars, which belong to Beijingers and stay in the city, and
normal non-local cars which occasionally enter Beijing for purposes such as tourism, business, and
freight transport (45).

In the longer-term, dependence on cars for travel needs will need to be addressed. The popularity
of private cars in Beijing is often attributed to the imbalance of job-housing locations, since a great
number of population live in the periphery area and work in central Beijing (12). Policymakers
should work on the co-location of jobs and housing through urban planning as a way to reduce
commuting. And complementary improvements to the public transit system could help meet res-
idents’ travel needs more efficiently than private cars. In essence, the policy leakage dilemma
reflects the unbalanced development between Beijing and its neighboring cities. As such, more
coherent transportation policies should be adopted as part of the regional integration process in the
future.

6. LIMITATIONS AND FUTURE WORK
While this study included the careful determination of the most appropriate study period and choice
of treatment and (synthetic) control cities, there are still a few limitations to this work that warrant
further research. A key identification challenge is that the treated cities are not randomly located
in space, but are rather within a small distance from Beijing. Therefore, some unobserved spatially
related characteristics may have a similar impact on the car populations if they also took effect
in 2011. Though according to our knowledge, no policy shocks that could have affected car popu-
lations in Beijing’s neighbor cities except Beijing’s car ownership restriction policy took effect in
2011, we recognize that this could be a limitation of our study.

Second, we recognize that reliance on geographical proximity to determine treatment and control
cities may be imperfect. There are ways in which Beijingers can obtain non-local license plates
from anywhere (not just neighboring cities), particularly through 4S shops and car dealerships.
While anecdotal evidence suggests that the majority of non-local car plates obtained through 4S
shops in Beijing still come from neighboring provinces such as Hebei (22), these other avenues for
policy leakage could present a challenge to our modeling approach.

Finally, there are other channels through which Beijing residents may attempted to circumvent the
car ownership restriction policy. Rather than registering cars in neighboring cities, anecdotal evi-
dence suggests that some Beijing residents turned to buying vans, motorcycles, or other vehicles
not restricted by the license plate quotas (14, 29). While private cars account for a majority of
the vehicles on Beijing’s roads, future research could measure the magnitude of policy leakage
through the purchase of other vehicle types. In addition, while our study focuses on the mar-
et for individually-owned cars, Beijing also has a separate license plate policy for official cars,
with a much smaller monthly quota (around 3,000-4,000 official cars compared to 17,500-20,250
individually-owned cars). If appropriate data sources can be identified, an interesting extension of
our work could be an investigation of policy leakage around the official car quota and potential
interplay between individually-owned and official cars.
7. CONCLUSION

Beijing’s car ownership restriction was enacted to curb rapid motorization in the city. Setting strict quotas on the number of new private cars that could be purchased and registered within the city, Beijing ostensibly appeared to reduce the number of new cars sold by 1,119,000-1,275,000 vehicles under the first three years of the policy. However, these estimates of the efficacy of the policy do not account for rampant non-compliant behavior, with significant anecdotal evidence pointing to the fact that Beijing residents circumvented the policy by purchasing cars in neighboring cities and then driving them back to Beijing. This research is the first to empirically test for the existence of this policy leakage, to measure its magnitude, and to explore how much it undermined the policy’s effectiveness.

To investigate the causal effect of Beijing’s car ownership restriction policy on the growth of private cars in neighboring cities, we conduct a difference-in-differences analysis of car registrations in neighboring cities using a distance-based treatment. To mitigate the selection bias of the control group, we use a synthetic control method to create a weighted combination of non-treated cities for each treated city based on the pre-intervention outcome and other predictors of the post-intervention outcome. Our results provide strong empirical evidence that car registrations increased in neighboring cities after the implementation of Beijing’s policy, with an average causal effect of about 5%. Factoring in variation by distance, we find that the magnitude of the policy leakage declines by 4% every 100 km of driving distance from Beijing. From our models, we estimate that approximately 443,000 additional private cars were sold in Beijing’s neighboring cities from 2011 to 2013 compared to what we would expect had Beijing not implemented the car ownership restriction.

In fact, we find that this policy leakage likely undermined the effectiveness of Beijing’s policy by as much as 35%-40% from 2011-2013. The evidence of policy leakage raises concerns regarding consequences of policy non-compliance, including dilution of the ability to control the number of private cars both in Beijing and in its neighboring cities, failure to alleviate traffic congestion, and loss of public faith in the government’s ability to enforce regulations. These issues necessitate policymakers and researchers to put Beijing’s congestion issues and car ownership and use policies in a regional context, confronting potential noncompliance at their source. That being said, additional research is needed to explore the impacts of the policy leakage measured here (in terms of new car sales) on related issues such as air pollution and traffic congestion. To explore these impacts, further information would be needed on how non-locally licensed cars are driven in Beijing and its neighboring cities. If the cars purchased in neighboring cities are driven less and during non-rush hour times compared with locally-licensed cars, then primary policy goals of congestion and air pollution mitigation might still be accomplished.

ACKNOWLEDGEMENTS

The authors thank their colleague Yonah Freemark for his feedback on the difference-in-difference approach used and the anonymous reviewers for their constructive comments that helped improve the communication of our results and discussion of their applicability. This research was supported by the Singapore–MIT Alliance for Research and Technology (SMART) Future Mobility Interdisciplinary Research Group, and was also partially supported by the MIT Energy Initiative’s Mobility of the Future Study.
REFERENCES

ological aspects, *Journal of Economic Literature*.
parative case studies: Estimating the effect of california’s tobacco control program, *Journal
control methods in comparative case studies, *Journal of Statistical Software* 42.
7. Beijing car owners register cars in Hebei Province (2013). People’s Daily Online http:
//leaders.people.com.cn/n/2013/1104/c58278-23422593.html.
8. Beijing introduces a new policy: the outside of the car into the Sixth Ring Road
160338247486319375&fr=spider&for=pc.
//www.chinadaily.com.cn/a/201806/16/W85b244a9fa310010f8f59d4a0.html.
10. Beijing: The peak of the field car into the five ring penalty 100 yuan deduction 3 points
.shtml.
11. Beijing will suspend issuing long-term permits for the entries of foreign vehicles into Bei-
12. Bi, X. (2013). Beijing harshly penalizes foreign cars, supporting measures should keep
up, *Guangzhou Daily* F02.
14. Car dealers cleverly sell vans to avoid the car license lottery policy (2011). Tencent
effect of migration on wages: evidence from a natural experiment, *American Economic
com/maps/documentation/geocoding/intro.
19. Fang, Y. (2011). Beijing drivers head to hebei for license plates, Global Times http:
//www.globaltimes.cn/content/637864.shtml.

