​Funding: Hong Kong MTR
Topic 1
Passenger Assignment to Journeys (Yiwen Zhu-NEU, Haris N. Koutsopoulos, Nigel Wilson) The research is looking into the problem of assigning individual passengers to train trips. A probabilistic model utilizing detailed AFC and train movement data is under development, incorporating capacity constraints of individual vehicles. The model estimates the probability that a given passenger boarded a specific train itinerary and the probability of being denied boarding. Such a model can be used for the assessment of the capacity utilization of the system, development of detailed performance metrics from the passengers’ point of view (for example, crowding), identification of individual journey time components, and estimation of the (expected) number of passengers denied boarding, as well information that can used by travel planners.
Topic 2
Tools for Evaluating Future Operations and Design of Demand Management (new student, Haris Koutsopoulos, and Jinhua Zhao) With the future expansion of the network there is a need for better tools to answer what if operating questions and design and evaluate strategies to deal with disruptions, increases in demand, etc. This activity will build capabilities, based on commercial tools, to evaluate alternatives operating strategies, and strategies to mitigate and relieve system congestion, either recurrent or due to incidents.
Topic 3
Personalized Customer Information and Customer Segmentation (new student, Jinhua Zhao and Haris Koutsopoulos) Information has long been recognized as an important instrument for behavioral change. However, generic information provision often proves ineffective. This project aims to develop a framework toward individualized information provision to MTR users. Effective personalization includes three components: Sparse use of information; Deep Customization; Data Infrastructure and Predictive Analytics. One methodological component is the demand prediction at the individualized customer level. The research will develop the general requirements for provision of individualized customer information, evaluate technological alternatives for the communication of information, and design potential experiments to evaluate their effectiveness. Customer segmentation will be used as the means for better understanding different passenger groups and their information needs.